# Matrix | Row Matrix | Column Matrix | Square Matrix | Identity Matrix

Matrix is an arrangement of element in rows and column in a rectangular array.

For Example :-

A =  ${ \begin{bmatrix} 1 &\quad 4 &\quad -2\\ 3 &\quad 7 &\quad 3\\2 &\quad-1 &\quad7 \end{bmatrix} }_{ 3\times 3 }$

B = ${ \begin{bmatrix} 6 & \quad 1 & \quad -2 \\ 4 & \quad 2 & \quad 5 \end{bmatrix} }_{ 2\times 3 }$

Row Matrix
Row Matrix is a matrix containing a single row.

For Example :-

A = ${ \begin{bmatrix} 2 & \quad -5 & \quad 1 \end{bmatrix} }_{ 1\times 3 }$

B = ${ \begin{bmatrix} 4 & \quad 3 & \quad -6 \end{bmatrix} }_{ 1\times 3 }$

Column Matrix
Column Matrix is a matrix containing a single coulumn.

For Example :-

A = ${ \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} }_{ 3\times 1 }$

A = ${ \begin{bmatrix} 7 \\ 2 \\ 4 \end{bmatrix} }_{ 3\times 1 }$

Square Matrix
Square Matrix is a matrix having equal numbers of rows and column.

For Example :-

A = ${ \begin{bmatrix} 2 &\quad -1 \\ 3 &\quad 5 \end{bmatrix} }_{ 2\times 2 }$

B = ${ \begin{bmatrix} 1 &\quad 3 &\quad -2\\ 4 &\quad 6 &\quad 3\\2 &\quad-1 &\quad7 \end{bmatrix} }_{ 3\times 3 }$

Identity Matrix
If the diagonal element of a square matrix are 1 and other element are 0, then the matrix is Known as Identity Matrix.

For Example :-

A = ${ \begin{bmatrix} 1 &\quad 0 \\ 0 &\quad 1 \end{bmatrix} }_{ 2\times 2 }$

B = ${ \begin{bmatrix} 1 &\quad 0 &\quad 0\\ 0 &\quad 1 &\quad 0\\0 &\quad0 &\quad1 \end{bmatrix} }_{ 3\times 3 }$