Introduction to Trigonometry Class 10 MCQ with Answers

Introduction to Trigonometry Class 10 MCQ with Answers – Maths Class 10 MCQ Online Test are covered in this Article. Introduction to Trigonometry Class 10 MCQ Test contains 30 questions. Answers to MCQ on Introduction to Trigonometry Class 10 are available after clicking on the answer. MCQ Questions for Class 10 with Answers have been made for Class 10 students to help check the concept you have learnt from detailed classroom sessions and application of your knowledge.

Board CBSE
Textbook Maths (NCERT)
Class Class 10
Chapter Chapter 8 Introduction to Trigonometry
Category MCQ Questions for Class 10 Maths with Answers

Introduction to Trigonometry Class 10 MCQ with Answers

1. The trigonometric ratios of an acute angle in a right triangle express the relationship between

(a) the angle and the length of its sides

(b) only sides

(c) only angles

(d) None of these

Answer

Answer: (a) the angle and the length of its sides

Explanation: The trigonometric ratios of an acute angle in a right triangle express the relationship between
the angle and the length of its sides


 

2.

In Δ ABC, trigonometric ratio of Sine ∠C is

(a)AB/AC

(b)AC/AB

(c) AB/BC

(d)BC/AC

Answer

Answer: (a)AB/AC

Explanation: Sine∠c = (side opposite to ∠c )/Hypotenuse = AB/AC


 

3. Value of Sin 30 is

(a)1

(b)0

(c)1/2

(d)1/3

Answer

Answer: (c) 1/2

Explanation: sin⁡30=1/2


 

4. Value of Sin30 Cos60 is

(a)1/4

(b)1/3

(c)2/3

(d)1/2

Answer

Answer: (a)1/4

Explanation: We know,

sin⁡ 30= 1/2

and cos 60 = 1/2

sin⁡30 cos⁡60 = 1/2×1/2

=1/4


 

5. 3sec30 Cos60 is

(a)1

(b)√1

(c)√2

(d)√3

Answer

Answer: (d)√3

Explanation:

sec⁡30 = 2/(√3),

cos⁡60 =1/2

3 sec⁡30 cos⁡60 = 3×2/(√3) ×1/2

= √3





6.   3 Sin45  Sec60 + 3Cos30 tan45 =

(a)3[√2+√3]

(b)(3/2) [2√2 +√3]

(c)[2√2 +√3]

(d) (3/2) [√2 +√3]

Answer

Answer: (b)(3/2) [2√2 +√3]

Explanation:
sin⁡45 = 1/(√2),

sec60= 2⁡,

cos⁡30=(√3)/2,

tan⁡45=1

3 sin⁡45 sec60⁡ + 3cos⁡30 tan⁡45 = 3×1/(√2)×2 + 3×(√3)/2×1

= 3 [ √2+(√3)/2]

= 3/2 [ 2√2+√3]


 

7. If tan 3x = cot230/√3   ,then value of x is

(a)45

(b)35

(c) 20

(d)30

Answer

Answer: (c) 20

Explanation:

cot 30 = √3 ,

cot2 30=(√3)2 = 3

tan 3x = (cot2 30)/√3

tan 3x = 3/√3

tan 3x = √3

tan 3x =tan 60

3x = 60

X = 20


 

Introduction to Trigonometry Class 10 MCQ with Answers

8. If cosec x =2 then value of x is

(a)10

(b) 15

(c)20

(d)30

Answer

Answer: (d)30

Explanation: cosec 30 = 2

Cosec x = 2

Cosec x = cosec 30

x = 30


 

9.  If x =30, then value of 4cos2x -1 /(2sin2x) is

(a) 1/√3

(b) 1

(c) 3/√2

(d) 0

Answer

Answer: (a) 1/√3

Explanation:
cos 60 = 1/2 ,

sin 60 = (√3)/2

(cos2x-1)/(2 sin2x)=(4cos2×30-1)/(2 sin2×30)

= (4cos60-1)/(2 sin60)

=(4×1/2-1)/(2×(√3)/2)

=(2-1)/(√3)

=1/(√3)


 

10.  sin2 60 is

(a) √3/2

(b) 3/2

(c) 3/4

(d) 3/6

Answer

Answer: (c) 3/4

Explanation:
sin 60 = (√3)/2

sin260 = ((√3)/2)2

= 3/4


 

11.  In Δ ABC , right angled at B, AB=3 cm and BC = 4 cm. The value of tan c is

(a) 3/5

(b) 9/16

(c) 4/3

(d) 3/4

Answer

Answer: (d) 3/4

Explanation:


tan c = (opposite side)/(adjacent side)

= 3/4


 

12.   (cos60 + sin30) /(1+cos30 + sin60) =

(a) 1/(1+√3)

(b) √3/2

(c) 1/(2+√3)

(d) 1/(2+2√3)

Answer

Answer: (a) 1/(1+√3)

Explanation:
cos 60 = 1/2 ,

cos 30 = (√3)/2 ,

sin 60 = (√3)/2 ,

sin 30 = 1/2

cos⁡60 + sin⁡30 /(1+cos⁡30 + sin⁡60)

= (1/2+1/2)/(1+(√3)/2+(√3)/2)

= 1/((2+√3+√3)/2)

= 1/((2+2√3)/2)

=1/(1+√3)


 

13.  2 sin260 + cos60=

(a) 0

(b) 1

(c) 2

(d) 3

Answer

Answer: (c) 2

Explanation:
sin 60 = (√3)/2 ,

cos 60 = 1/2

2 sin260 + cos60

= 2 (√3/2)2 + 1/2

= 2 (3/4) +1/2

= 3/2 +1/2

= 4/2 = 2


 

14. (2tan30)/(1+ tan230) =

(a)sin30

(b) sin60

(c) cos45

(d) Cos60

Answer

Answer: (b) sin60

Explanation:
tan 30 = 1/√3 ,

tan2 30=(1/√3)= 1/3

(2 tan30)/(1+tan2 30)

= (2 (1/√3))/(1+1/3)

= (2 (1/√3))/(4/3)

= (2/√3)/(4/3)

= 2/√3×3/4

= (√3)/2

= sin 60


 

15. (1/3) tan260 – 4 sin2 30 – (1/2) cosec245 + sec260  =

(a)3

(b)2

(c) 1

(d) None of these

Answer

Answer: (a)3

Explanation:
sin 30 = 1/2 ,

tan 60 = √3 ,

cosec 45 = √2 ,

sec 60 =2

(1/3) tan260 – 4 sin2 30 – (1/2) cosec245 + sec260  =

= (1/3)(√3 )2– (4) (1/2)2– (1/2) (√2 )2+(2)2

= (1/3)(3)– (4) (1/4)- (1/2) (2)+4

= 1-1-1+4 = 3


 

16.  sin2 θ + cos2 θ=

(a)1

(b)0

(c) 2

(d) None of these

Answer

Answer: (a)1





17.  1 – sin2 θ =

(a) sin2 θ

(b) cos2 θ

(c) sin2 θ + cos2 θ

(d)0

Answer

Answer: (b) cos2 θ

Explanation:

We know,

sin2 θ + cos2 θ =1

1-sin2 θ = cos2 θ


 

Introduction to Trigonometry Class 10 MCQ with Answers

18.  sin4 θ – cos4 θ=

(a) 1+2sin2 θ

(b) 1-sin2 θ

(c) 2sin2 θ-1

(d) sin2 θ + 1

Answer

Answer: (c) 2sin2 θ-1

Explanation: sin4 θ – cos4 θ=

(sin2 θ)2 -(cos2 θ)2

= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ)

= 1 (sin2 θ – cos2 θ)

= (sin2 θ -(1-sin2 θ)

= (2sin2 θ-1)


 

19.  √(1-cosA)/(1+cosA) =

(a) cosec A – cot A

(b) cosec A + cot A

(c) cot A -cosec A

(d) cosec A

Answer

Answer: (a) cosec A – cot A

Explanation: √(1-cos⁡A)/(1+cos⁡A )

=√(1-cos⁡A)/(1+cos⁡A ) ×(1-cos⁡A)/(1-cos⁡A )

= √(1-cos⁡A)2/(1-cos2A)

= √(1-cos⁡A)2/(sin2 A)

= (1-cos⁡A)/sin⁡A

= 1/sin⁡A -cos⁡A/sin⁡A

= cosec A – cot A


 

20.  sin8 θ – cos8 θ -(2sin2 θ – 1)=

(a) (2sin2 θ – 1)

(b) (2sin2 θ +1)

(c) 0

(d)None of these

Answer

Answer: (d)None of these

Explanation: sin8 θ – cos8 θ – (2sin2 θ – 1)

= (sin4 θ)2 – (cos4 θ)2 -(2sin2 θ – 1)

= (sin4 θ + cos4 θ) (sin4 θ -cos4 θ ) -(2sin2 θ – 1)

= { (sin2 θ)2 + (cos2 θ)2 } { (sin2 θ)^2 – (cos2 θ)^2 } – (2sin2 θ – 1)

= { (sin2 θ + cos2 θ)2 – 2sin2 θ cos2 θ} { (sin2 θ + cos2 θ) (sin2 θ – cos2 θ) } – (2sin2 θ – 1)

= { 1 – 2sin2 θ cos2 θ} { (sin2 θ – cos2 θ) } – (2sin2 θ – 1)

= { 1 – 2sin2 θ cos2 θ} {sin2 θ -(1- sin2)

 

21.  Sec A =

(a)sin A

(b) 1/sin A

(c) cos A

(d)1/cos A

Answer

Answer: (d)1/cos A


 

22. If sin θ – cos θ = p   and sec θ – cosec θ = q  , then q(p2-1) =

(a)p

(b) -2p

(c)2p

(d) None of these

Answer

Answer: (b) -2p

Explanation: Given sin⁡θ-cosθ=p and sec⁡θ -cosecθ=q

q(p2-1) = (sec⁡θ -cosecθ)[(sin⁡θ -cos⁡θ)2-1]

= (sec⁡θ-cosecθ)[sin2 θ + cos2 θ-2 sin⁡θ cos⁡θ-1]

= (sec⁡θ -cosecθ)[1-2 sin⁡θ cos⁡θ-1]

= (sec⁡θ -cosecθ)[-2 sin⁡θ cos⁡θ]

= sec⁡θ[-2 sin⁡θ cos⁡θ ] – cosec⁡θ[-2 sin⁡θ cos⁡θ]

= 1/cos⁡θ [-2 sin⁡θ cos⁡θ]+1/sin⁡θ [2 sin⁡θ cos⁡θ]

= -2[sin⁡θ-cos⁡θ ]

= -2p


 

23.  [(1+ 2 sin A  cos A)/(cos A + sin A) ] sec A =

(a)1+sec A

(b) 1-sec A

(c) 1+tan A

(d)1-tan A

Answer

Answer: (c) 1+tan A

Explanation: [(1+ 2 sin A  cos A)/(cos A + sin A) ] sec A =

(cos2 A + sin2 A +2 sin⁡ A cos⁡ A )/(cos⁡ A +sin⁡ A )sec A

=[(cos A +sin ⁡A )2/(cos⁡ A +sin ⁡A) ] × (1/cos ⁡A)

= [cos A +sin⁡ A] × (1/cos ⁡A)

= (1 + sin ⁡A)/cos ⁡A

= 1 + tan A


 

24.    (1+ cos A) (tan A+ cot A) – sec A cosec A =

(a)cosec A

(b) cos A

(c) sin A

(d) sec A

Answer

Answer: (a)cosec A

Explanation: (1+ cos A) (tan A+ cot A) – sec A cosec A =

(1+cos A)[sin ⁡A/cos ⁡A +cos ⁡A/sin ⁡A ] – sec A cosec A

= (1+cos A) [(sin2 A+ cos2 A)/cos⁡ A sin⁡ A] – sec A cosec A

= (1+cos A) [1/cos⁡ A sin ⁡A] – sec A cosec A

= 1/cos⁡ A sin ⁡A + cos ⁡A/cos A sin ⁡A – sec A cosec A

= sec A cosec A + cosec A -– sec A cosec A

= cosec A


 

25. If Sin A = cos A, then value of A is

(a)π/2

(b)π/4

(c)π/3

(d)π/6

Answer

Answer: (b)π/4

Explanation: Sin A = Sin π/4

=1/(√2)

= cos A

= cosπ/4

A = π/4





26. 8-8cos2 θ will be equal to

(a) cos2 θ

(b) 8 cos2 θ

(c) sin2 θ

(d)8 sin2 θ

Answer

Answer: (d)8 sin2 θ

Explanation: We know

sin2 θ + cos2 θ =1

8 (sin2 θ + cos2 θ) =1(8)

8 sin2 θ + 8 cos2 θ =8

8-8cos2 θ= 8 sin2 θ


 

27. If A=60, then (1- cos A)/(1+ cos A)  =

(a) 1/3

(b)1/6

(c) 1/2

(d) 2/3

Answer

Answer: (a) 1/3

Explanation: (1-cos⁡A)/(1+cos⁡A )

= (1-cos⁡60)/(1+cos⁡60 )

=(1-1/2)/(1+1/2)

=(1/2)/(3/2)

= 1/3


 

28. If cos A + cos2A =1, then sin A+(1-cot2A)×(1/cosec2A)

(a)sin A-cos A

(b)sin A + cos A

(c) cos A – sin A

(d) None of these

Answer

Answer: (d) None of these

Explanation: cos A + cos2 θ =1

1-cos2 θ =cos ⁡A………………(a)

sin A+(1-cot2A)×(1/cosec2A)

= sin A + (1-(cos2 A)/(sin2 A))× 1/(1/(sin2 A))

= Sin A + (sin2 A – cos2 A)

= Sin A + (1 – cos2 A – cos2 A)

= Sin A + Cos A – cos2 A


 

29. If tan A = 1, then value of cosec A is

(a)1

(b)0

(c)√2

(d)√3

Answer

Answer: (c)√2

Explanation: tan A = tan π/4

A = π/4

Cosec A = cosec π/4

= √2


 

30. cos2A + cos2A sin2A =

(a) cos4A

(b) sin4A

(c) 1-cos4A

(d) None of these

Answer

Answer: (a) cos4A

Explanation: sin2 A + cos2 A =1

1-sin2 A = cos2 A

cos2 A+ cos2 A sin2 A = cos2 A [ 1 + sin2 A]

= [ 1 – sin2 A] [ 1 + sin2 A]

= 1 – sin4 A  ∴[1-sin4 A =cos4 A]

= cos4 A


 

MCQ Questions for Class 10 Maths

Frequently Asked Questions on Introduction to Trigonometry Class 10 MCQ with Answers

1. Are these MCQ on Introduction to Trigonometry Class 10 are based on 2021-22 CBSE Syllabus?

Yes . There are 30 MCQ’s on this Chapter in this blog.

2. Are you giving all the chapters of Maths Class 10 MCQs with Answers which are given in CBSE syllabus for 2021-22 ?

Yes, we are providing all the chapters of Maths Class 10 MCQs with Answers.

Leave a Comment